
Official Use Only / ECI

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary 
of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND NO. 2017-8900 C

Performance Portability in SPARC – Sandia’s 
Hypersonic CFD Code for Next-Generation Platforms

Micah Howard, SNL, Aerosciences Department
& the SPARC Development Team

23 Aug 2017 – DOE COE Performance Portability Meeting



Official Use Only / ECI

Gas-phase thermochemical
non-equilibrium

Unsteady, 
turbulent 

flow

Gas-surface 
chemistry

Flowfield
radiation

Laminar/transitional/turbulent 
boundary layer

Maneuvering RVs:
Shock/shock & 
shock/boundary 
layer interaction

Atmospheric 
variations

Surface ablation & in-depth 
decomposition

Random vibrational loading

Motivation: Hypersonic Reentry Simulation

2



Official Use Only / ECI

SPARC Compressible CFD Code
§ State-of-the-art hypersonic CFD on next-gen platforms

§ Production: hybrid structured-unstructured finite volume methods
§ R&D: high order unstructured discontinuous collocation element methods
§ Perfect and thermo-chemical non-equilibrium gas models
§ RANS and hybrid RANS-LES turbulence models 

§ Enabling technologies
§ Scalable solvers
§ Embedded geometry & meshing
§ Embedded UQ and model calibration

§ Credibility
§ Validation against wind tunnel and flight test data
§ Visibility and peer review by external hypersonics community

§ Software quality
§ Rigorous regression, V&V and performance testing
§ Software design review and code review culture

3



Official Use Only / ECI

4

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos 2.0

Multi-Core Many-Core APU CPU+GPU

LAMMPS AlbanyTrilinos Applications & Libraries

performance portability for C++ applications

Performance Portability - Kokkos



Official Use Only / ECI

Performance Portability
The problem on Heterogenous Architectures (e.g. ATS-2)
• C++ virtual functions (and function pointers) are not (easily) portable
• Answers?

1. Kokkos support for portable virtual functions
2. C++ standard support for portable virtual functions
3. Run-time->compile-time polymorphism

SPARC has taken the ‘run-time->compile-time polymorphism’ approach

5

With this approach, we needed a mechanism to dispatch functions 
dynamically (run-time) or statically (compile-time)

Dynamic dispatch is possible on GPUs but requires the object be created
for each thread or team on the GPU



Official Use Only / ECI

Performance Portability

Now we need a mechanism to convert run-time polymorphism to
compile-time polymorphism so we can dispatch functions statically

6

Enter the rt2ct chain…

A “Create” chain is used to piece together compile-time instantiations of classes

The end of the chain (which is all compile-time) is handed to a Kokkos kernel

In this way, we can arbitrarily handle combinations of physics models 
(GasModels, FluxFunctions, BoundaryConditions) for (efficient) execution 
on GPUs

template <bool is_dyn, typename Type=MyClass>
struct Dispatcher {
static void my_func (const MyClass* obj) {
static_cast<const Type*>(obj)->Type::my_funcT();

}; 



Official Use Only / ECI

Threaded Assembly/Solves
Threaded Assembly on Structured Grids: MeshTraverserKernel

class PhysicsKernel : 
public MeshTraverserKernel<PhysicsKernel>

{ /* ... */ };

MeshTraverserKernel allows a physics code (think flux/flux Jacobian
computation and assembly) to operate on a structured (i,j,k) block

- implements a multi-dimensional range policy for Kokkos::parallel_for
- provides i,j,k line traversal (CPU/KNL) and ‘tile’ traversal (GPU)

Array4D node-level multi-dimensional data for a structured block
- wraps a Kokkos::DualView

Graph coloring (red-black) to avoid atomics during assembly

Threaded solves provided through Tpetra/Belos (point-implicit, GMRES)
- OpenMP used for SPARC’s native point-implicit and line-implicit solvers

7

Net result of FY16 work: SPARC is running, end-to-end,
(equation assembly + solve) on the GPU



Official Use Only / ECI

Performance Portability

§ SPARC is running on all testbed, capacity & capability platforms

available to SNL, notably:

§ Knights Landing (KNL) testbed

§ Power8+GPU testbed

§ Sandy Bridge & Broadwell CPU-based ‘commodity clusters’

§ ATS-1 – Trinity (both Haswell and KNL partitions)

§ ATS-2 – Power8+P100 ‘early access’ system

8



Official Use Only / ECI

SPARC vs Sierra/Aero Performance
For the Generic Reentry Vehicle use-case…

- SPARC performing ~2x faster than Sierra/Aero
- Parallel efficiency is better than Sierra/Aero
- Even higher performance from SPARC for CPU-only systems will 

come with continued investment in NGP performance optimization
- Structured vs unstructured performance…

Investigation of CPU-only, MPI-only performance

(EA t/s = Equation Assembly time/step; ES t/s = Equation Solve time/step; T/S = Total Time/Step)

9



Official Use Only / ECI

SPARC: Strong Scaling Analysis
For the heaviest kernel during equation assembly…

10

First…
lower = 
faster
&
this is a
log2 scale

- Threaded KNL >1.5x faster than MPI-only KNL
- Threading on KNL is important

- HSW/BDW 1.25-1.5x faster than 
threaded KNL
- Higher KNL assembly performance 
may come from SIMD vectorization
- Vectorization a FY18 deliverable

- P100 GPUs 1.5-2x faster than HSW/BDW
- Higher GPU performance still possible



Official Use Only / ECI

SPARC: Strong Scaling Analysis
For one critical MPI communication during equation assembly…

11

- Something is amiss with GPU-GPU MPI on P8/P100 systems 
- Apparently this will be fixed with P9/Volta?

- Halo exchange for CPU good, KNL okay
- Higher performance for low rank/high thread count KNL



Official Use Only / ECI

SPARC: Strong Scaling Analysis
For the linear equation solve…

12

- GPU-based solves not shown
- GPU-based solver performance analysis 
and optimization investment needed

- Solves on threaded KNL ~2x faster than 
HSW/BDW
- Higher performance on KNL still possible 
with recent compact BLAS work by the 
KokkosKernels team 
- Higher performance at scale for low 
rank/high thread count KNL
- Superlinear behavior a DDR/HBM effect



Official Use Only / ECI

SPARC: Weak Scaling Analysis
For the heaviest kernel during equation assembly…

- HSW/BDW 1.25-1.5x faster than threaded KNL

- Again, vectorization may help

- P100 GPUs 1.5-2x faster than HSW/BDW

- Similar trend as S.S.: Threaded KNL >1.5x faster

- Again, threading on KNL is importantRecall…

lower = 

faster

&
this is a

log2 scale

13



Official Use Only / ECI

SPARC: Weak Scaling Analysis
For one critical MPI communication during equation assembly…

- Problematic MPI behavior on P8/P100 systems…

- Halo exchange for CPU good, KNL okay
- Strong scaling on KNL for halo exchange was okay
- Weak scaling on KNL for halo exchange needs investigation

14



Official Use Only / ECI

SPARC: Weak Scaling Analysis
For the linear equation solve…

- Again, GPU-based solves not shown

- Solves on threaded KNL ~2x faster than HSW/BDW
- Higher performance at scale for low rank/high thread count KNL

15



Official Use Only / ECIPositive and Negative Experiences Developing 
PP Code

16

§ Positive
§ Kokkos has helped – we can claim we are mostly portable and performant

§ The amount of architecture specific code is insignificant

§ Faster code has resulted from designing performance portable code

§ Negative
§ The DevOps challenge: building the codes and its dependent libraries on 

several disparate architectures and establishing testing

§ The Performance analysis challenge: collecting meaningful performance 
data on each architecture

§ Developing for the GPU:
§ This drove a lot of our software design decisions

§ A CPU-only build on a Linux workstation with Intel compiler: 
– Clean: 13 min; Incremental: 3 min

§ A GPU build on a Power8 node with GCC/Cuda8 compiler: 
– Clean: 47 min, Incremental: 40 min



Official Use Only / ECI

Summary

17

§ SPARC is being developed as a performance portable 

compressible CFD code to address the challenges posed by 

next-generation computing platforms

§ ‘The good’ for performance portability and SPARC:

§ CPU-only, MPI-only performance is ~2x faster than the reference code

§ Linear solves are ~2x faster for threaded KNL than CPU

§ Most significant assembly kernels are ~2x faster for P100 than CPU

§ Future work for performance portability and SPARC:

§ Improve assembly performance for KNL -> vectorization

§ Hope for the best for halo exchange on P9/Volta (and reduce our MPI comm)

§ Work on solver performance for GPUs


